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A Hybrid Fourth-Order FDTD Utilizing a
Second-Order FDTD Subgrid

Stavros V. Georgakopoulos, Student Member, IEEE, Rosemary A. Renaut, Constantine A. Balanis, Fellow, IEEE, and
Craig R. Birtcher

Abstract—A hybrid method utilizing the second-order accurate
in time and fourth-order accurate in space FDTD(2, 4) coupled
with the standard second-order accurate both in time and space
FDTD(2, 2) on a subgrid is presented. The accuracy of the method
is tested by computing the parameters of two monopoles
mounted on a ground plane and it is found to be very satisfactory.
Significant computational savings both in memory and time are
accomplished by using this hybrid method.

Index Terms—Finite-difference time-domain, higher-order
schemes, subgrid modeling.

I. INTRODUCTION

T HE technological advancements of the last few decades
have triggered new engineering problems and challenges.

With the clock speed of all electronic equipment increasing,
communication systems operate at higher frequencies. There-
fore, the antenna elements become smaller, whereas the plat-
forms they operate on, e.g., helicopter airframes, become elec-
trically larger. These problems yield large computational do-
mains and require significant computational resources, such as
memory and execution time. Traditional finite methods (FDTD
and FEM) are second-order accurate, thereby restricting the size
of the domains that can be handled efficiently.

The standard FDTD method was introduced by Yee [1] in
1966. The classical FDTD method as proposed by Yee [1]
is second-order accurate both in time and space [FDTD(2,
2)] thereby requiring many grid points per wavelength to
accurately model the wave propagation. The FDTD method, as
is typical for discrete methods, is dispersive; the phase velocity
on the FDTD grid is not the same as the phase velocity of the
physical continuous problem. In order to reduce dispersion
errors, a finer discretization is required. On the other hand, finer
discretizations demand larger memory and increased computa-
tional time, thereby restricting yet further the situations that can
be tackled. Consequently, mesh refinement is not an efficient
solution and sometimes is not even possible.

Numerous attempts have been made in the field of FDTD
research to minimize phase errors [2]–[4]. One of the most
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promising approaches is based on higher-order accuracy
schemes [5]–[9]. Such schemes theoretically exhibit lower
dispersion errors and can utilize coarser grids as compared
to those needed to achieve comparable levels of accuracy
with a second-order scheme. Moreover, coarser meshes yield
smaller computational spaces, reduced computational times
and require less computational resources. Thus, ideally, the
implementation of higher-order FDTD schemes will enable the
efficient analysis of electrically larger problems.

The modeling of complex structures introduces additional
challenges in high-order FDTD for the correct formulations
of boundary conditions and discontinuities. The common
method of dealing with these two issues is to implement
one-sided higher-order finite differences. However, such
one-sided stencils cause instabilities which are usually very
difficult to resolve. Several papers have attempted to address
these problems. In [10], time-stable boundary conditions for
higher-order compact schemes were derived based on the
summation-by-parts procedure, but only for one-dimensional
hyperbolic problems. This approach was recently generalized
to two-dimensional (2-D) problems in [11]. In [12], instabilities
caused by one-sided high-order boundary conditions were
resolved by using an artificial dissipation. In [13], a compact
higher-order scheme was combined with boundary conditions
implemented by one-sided differences, and a dissipative tem-
poral integration method (Runge-Kutta fourth-order). In [14],
the instabilities were eliminated through a filtering approach.
A method of dealing with 2-D material discontinuities was
presented in [15]. All of these methods, although promising,
have not yet been verified for complex three-dimensional
problems for which boundary conditions may be required, not
only on the external boundary of the computational space, but
also in the interior of the domain.

The proposed approach in this paper consists of combining
a subgridding technique with a higher-order scheme. Subgrid-
ding techniques have been used in the past in the context of the
standard FDTD [16], [17]. These methods divide the simulation
space into two separate grids: a fine one and a coarse one. Here,
the subgridding method of [16] is used in conjunction with the
second-order accurate in time and fourth-order accurate in space
FDTD(2, 4). On the fine grid, the standard FDTD(2, 2) is used
to handle any of the fine features of the structure, whereas on the
coarse grid, FDTD(2, 4) is used. Thus, existing successfully-ap-
plied techniques in FDTD(2, 2) for the incorporation of discon-
tinuities, boundary conditions, and thin features are available
for use on the fine grid. On the coarse mesh, away from phe-
nomena associated with the complex structure, FDTD(2, 4) is
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used to mainly simulate the wave propagation in homogeneous
media. Following this approach, high accuracy is obtained both
around fine geometric features, such as thin wires, thin slots,
etc., as well as in the wave propagation which is simulated by a
higher-order scheme, i.e., FDTD(2, 4).

II. M ETHOD

The method developed here uses a modification of the
subgridding technique of [16]. The boundary between the fine
and the coarse grid is collocated with electric field components
instead of magnetic field components. The ratio between the
coarse and the fine grid cell sizes is chosen to be 1:3 as in [16].
This odd-ratio provides significant advantages, as discussed in
[16]. A brief description of the procedure is given as follows
(for details see [16]).

1) Apply FDTD(2, 4) on all the main grid points (including
the ones inside the fine grid) and obtain and

.
2) Apply FDTD(2, 2) on the fine grid to obtain .
3) Apply FDTD(2, 2) on the fine grid to obtain . Up-

date on the fine-coarse boundary using space and
time interpolation. Apply (11) of [16] to weight
one cell inside the fine grid.

4) Apply FDTD(2, 2) on the fine grid to obtain . Use
(12) and (13) of [16] to weight and col-
located one coarse grid cell into the fine domain.

5) Update at the fine-coarse boundary using the ob-
tained values for from step 4.

6) Repeat step 3 to obtain , step 2 to obtain ,
and step 3 again to obtain . Correct the fine-coarse
grid boundary values of using space interpolation of

.
7) Transfer all fine grid field values to the corresponding

collocated coarse grid field values.
Capital letters and represent coarse grid field values, and
small letters and represent fine grid field values.

III. RESULTS

To illustrate the accuracy of the hybrid FDTD(2, 4)-Subgrid
FDTD(2, 2), a geometry of two monopole antennas mounted on
a finite ground plane is analyzed. The specifications of the ge-
ometry are shown in Fig. 1, and the radius of the two monopoles
is 0.603 25 mm. The distance between the two monopoles was
set to 32 cm so that it would be electrical large at the frequencies
of interest [i.e., 32 cm is approximately 19 wavelengthsat
18 GHz].

Three test simulations were performed by using 1) FDTD(2,
2) with a cell size of 4 mm (or at 18 GHz), 2) FDTD(2,
2) with a cell size of 1.67 mm (or at 18 GHz), and 3)
the hybrid FDTD(2, 4)-Subgrid FDTD(2, 2) with a coarse grid
cell size of 4 mm (or at 18 GHz) and a fine grid cell size

mm mm (or at 18 GHz). These three simu-
lations are labeled 1, 2, and 3, respectively. Notice that in simu-
lation 3, a fine grid was applied around each wire and the rest of
the space used a coarse grid. The fine grid extended two coarse
grid cells (or six fine grid cells) around each wire. The radius of
the monopoles was taken into account in all three simulations

Fig. 1. Geometry of two monopoles on a ground plane.

Fig. 2. S of the 6 cm long monopole shown in Fig. 1.

Fig. 3. S between the two monopoles shown in Fig. 1.

both along the wire (using a thin wire model) and the excita-
tion (using a source based on the radial electric fields). The
parameters were computed by using the procedure described in
[18]. To speed the simulation times, all sources used an internal
resistance of 50 ohms [18]. The results of the three simulations
are illustrated in Figs. 2 and 3, where the and parame-
ters of the two monopoles are compared against measurements
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TABLE I
SIMULATION TIMES AND MEMORY REQUIREMENTS

performed in the Electromagnetic Anechoic Chamber facility
(EMAC) at Arizona State University (ASU). represents the
reflection coefficient of the longest monopole (6 cm long) and

represents the coupling between the two monopoles. The
accuracy of is governed by the modeling of the wire and
the discretization near the wire whereas the accuracy ofis
governed by the accuracy of the FDTD stencil used to simu-
late the wave propagation from one element to the other. For
both and , the computations of simulation 1 [FDTD(2,
2) with mm] do not agree well with the measurements
due to the poor discretization (only at 18 GHz). However,
simulations 2 and 3 provided predictions that are in very good
agreement with measurements. Simulation 2 used FDTD(2, 2)
and mm (or at 18 GHz), which is a good
discretization of our structure. Simulation 3 used the hybrid
FDTD(2, 4)-Subgrid FDTD(2, 2) and provided very good re-
sults for since the discretization of the wires was done with
a fine grid ( mm or at 18 GHz). Furthermore,
the hybrid FDTD(2, 4)-Subgrid FDTD(2, 2) computations for

were also accurate since the wave propagation from one el-
ement to the other was performed using the higher-order stencil
FDTD(2, 4), with mm (or at 18 GHz). Therefore, it
can be concluded that in the hybrid approach the field variations
around thin geometric features, such as wires, are captured using
the standard FDTD(2, 2) and the available sub-cell models on a
fine grid. Moreover, the field propagation for large distances is
accurately modeled by a higher-order FDTD stencil [FDTD(2,
4) in our case] on a coarse grid.

For the computation of parameters, two simulations must
be performed for each of our cases. The simulation times, as
well as the memory requirements for each simulation, for cases
1, 2, and 3, are depicted and compared in Table I. To obtain
accurate results with FDTD(2, 2), a cell size of 1.67 mm had
to be used (case 2). This case required almost two and a half
times more time and three and a half times more memory than
the respective time and memory of case 3, which used the hy-
brid FDTD(2, 4)-Subgrid FDTD(2, 2). It should be noted that
the computational savings will be significantly larger in cases
where the computational domain is electrically large in all three
directions (in our geometry, see Fig. 1, the domain is electrically
large along one direction only).

IV. CONCLUSION

An accurate hybrid FDTD(2, 4) coupled with FDTD(2, 2) on
a subgrid has been presented. The results indicate great compu-
tational savings both in memory and time. Moreover, this hybrid

approach is very promising for other practical situations because
of the flexibility for the inclusion of all existing thin and sub-cell
models with FDTD(2, 2). Simultaneously, the method offers the
high accuracy of FDTD(2, 4) for the propagation of waves over
electrically large distances. Finally, this hybrid approach was
found to be stable after several thousands of time-steps when
the procedures of [16] were incorporated.
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