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A Hybrid Fourth-Order FDTD Utilizing a
Second-Order FDTD Subgrid
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Abstract—A hybrid method utilizing the second-order accurate promising approaches is based on higher-order accuracy
in time and fourth-order accurate in space FDTD(2, 4) coupled schemes [5]-[9]. Such schemes theoretically exhibit lower
with the standard second-order accurate both in time and space gishersion errors and can utilize coarser grids as compared
FDTD(2, 2) on a subgrid is presented. The accuracy of the method -
is tested by computing the S parameters of two monopoles © those needed to achieve comparable levels of accuracy
mounted on a ground plane and it is found to be very satisfactory. With a second-order scheme. Moreover, coarser meshes yield

Significant computational savings both in memory and time are smaller computational spaces, reduced computational times

accomplished by using this hybrid method. and require less computational resources. Thus, ideally, the
Index Terms—Finite-difference time_domain, higher-order implementation Of higher—ordel‘ FDTD SChemeS W|” enable the
schemes, subgrid modeling. efficient analysis of electrically larger problems.

The modeling of complex structures introduces additional
challenges in high-order FDTD for the correct formulations
of boundary conditions and discontinuities. The common

HE technological advancements of the last few decadegthod of dealing with these two issues is to implement

have triggered new engineering problems and challengese-sided higher-order finite differences. However, such
With the clock speed of all electronic equipment increasingne-sided stencils cause instabilities which are usually very
communication systems operate at higher frequencies. Thedificult to resolve. Several papers have attempted to address
fore, the antenna elements become smaller, whereas the plaése problems. In [10], time-stable boundary conditions for
forms they operate on, e.g., helicopter airframes, become elrigther-order compact schemes were derived based on the
trically larger. These problems yield large computational dgummation-by-parts procedure, but only for one-dimensional
mains and require significant computational resources, suchhgperbolic problems. This approach was recently generalized
memory and execution time. Traditional finite methods (FDTE two-dimensional (2-D) problems in [11]. In [12], instabilities
and FEM) are second-order accurate, thereby restricting the sia@sed by one-sided high-order boundary conditions were
of the domains that can be handled efficiently. resolved by using an artificial dissipation. In [13], a compact

The standard FDTD method was introduced by Yee [1] inigher-order scheme was combined with boundary conditions
1966. The classical FDTD method as proposed by Yee [fhhplemented by one-sided differences, and a dissipative tem-
is second-order accurate both in time and space [FDTD{#bral integration method (Runge-Kutta fourth-order). In [14],
2)] thereby requiring many grid points per wavelength tthe instabilities were eliminated through a filtering approach.
accurately model the wave propagation. The FDTD method, Asmethod of dealing with 2-D material discontinuities was
is typical for discrete methods, is dispersive; the phase velocjijesented in [15]. All of these methods, although promising,
on the FDTD grid is not the same as the phase velocity of thave not yet been verified for complex three-dimensional
physical continuous problem. In order to reduce dispersi@noblems for which boundary conditions may be required, not
errors, afiner discretization is required. On the other hand, fingiily on the external boundary of the computational space, but
discretizations demand larger memory and increased compuiio in the interior of the domain.
tional time, thereby restricting yet further the situations that can The proposed approach in this paper consists of combining
be tackled. Consequently, mesh refinement is not an efficienkubgridding technique with a higher-order scheme. Subgrid-
solution and sometimes is not even possible. ding techniques have been used in the past in the context of the

Numerous attempts have been made in the field of FDT&andard FDTD [16], [17]. These methods divide the simulation
research to minimize phase errors [2]-[4]. One of the mospace into two separate grids: a fine one and a coarse one. Here,

the subgridding method of [16] is used in conjunction with the
second-order accurate in time and fourth-order accurate in space
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used to mainly simulate the wave propagation in homogeneou I
media. Following this approach, high accuracy is obtained bott

around fine geometric features, such as thin wires, thin slots i
etc., as well as in the wave propagation which is simulated by ¢ § o
higher-order scheme, i.e., FDTD(2, 4). P

Il. METHOD

The method developed here uses a modification of the !
subgridding technique of [16]. The boundary between the fine = * "~
and the coarse grid is collocated with electric field components- 2
instead of magnetic field components. The ratio between the
coarse and the fine grid cell sizes is chosen to be 1:3 as in [1%?.‘ 1
This odd-ratio provides significant advantages, as discussed in
[16]. A brief description of the procedure is given as follows
(for details see [16]).

1) Apply FDTD(2, 4) on all the main grid points (including
the ones inside the fine grid) and obtaffi**/2 and
Entl,

2) Apply FDTD(2, 2) on the fine grid to obtaifi*+1/6.

3) Apply FDTD(2, 2) on the fine grid to obtai*t'/3. Up- @
datee™+1/3 on the fine-coarse boundary using space and.;
time interpolation. Apply (11) of [16] to weight*t1/3
one cell inside the fine grid. -20

4) Apply FDTD(2, 2) on the fine grid to obtailr*t3/¢, Use ]

Geometry of two monopoles on a ground plane.
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(12) and (13) of [16] to weight™+3/¢ and H™*1/2 col-
located one coarse grid cell into the fine domain.
5) UpdateE™*! at the fine-coarse boundary using the ob-

- FDTD(2,2) (cell size= 4 mm}
FDTD(2,2) (cell size= 1.67 mm)
-—— FDTD(2,4)/Subgrid FDTD(2,2)
——  Measurements

tained values folH”*'/2 from step 4. -30, <
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6) Repeat step 3 to obtaift1t2/3, step 2 to obtairk”*5/6, Frequency (GrEz)

and step 3 again to obta®t!. Correct the fine-coarse Fia.

. : - - g. 2. 51 of the 6 cm long monopole shown in Fig. 1.
grid boundary values ef*** using space interpolation of
Entl,

-30 T T T T T
7) Transfer all fine gric: field values to the corresponding | ----  FDTD(22) (ool size=4 mm)
e BBl e ;.| ——  FDTD(2,2) (cell size= 1.67 mm) J
collocated coarse grid field values. i | === FDTD24ySubgrid FOTD(22)

Capital letters and H represent coarse grid field values, and -4
small letters: and’ represent fine grid field values.

Ill. RESULTS 50

To illustrate the accuracy of the hybrid FDTD(2, 4)-Subgrid %435-
FDTD(2, 2), a geometry of two monopole antennas mounted or“_
a finite ground plane is analyzed. The specifications of the ge:
ometry are shown in Fig. 1, and the radius of the two monopoles -85}
is 0.603 25 mm. The distance between the two monopoles wa _

setto 32 cm so that it would be electrical large at the frequencie:

of interest [i.e., 32 cm is approximately 19 wavelengths at 751 : i : o ;
18 GHz]. 0 1 ; ‘ i ;
6 8 10 16 18

Three test simulations were performed by using 1) FDTD(2, Frequeney (GHz)

2) with a cell size of 4 mm (on/4 at 18 GHz), 2) FDTD(2,

2) with a cell size of 1.67 mm (ok/10 at 18 GHz), and 3) Fig. 3. S12 between the two monopoles shown in Fig. 1.
the hybrid FDTD(2, 4)-Subgrid FDTD(2, 2) with a coarse grid

cell size of 4 mm (or\/4 at 18 GHz) and a fine grid cell size both along the wire (using a thin wire model) and the excita-
4/3 mm ~ 1.334 mm (or A\/12 at 18 GHz). These three simu-tion (using a source based on the radial electric fields). The
lations are labeled 1, 2, and 3, respectively. Notice that in simparameters were computed by using the procedure described in
lation 3, a fine grid was applied around each wire and the rest[@B]. To speed the simulation times, all sources used an internal
the space used a coarse grid. The fine grid extended two coaesastance of 50 ohms [18]. The results of the three simulations
grid cells (or six fine grid cells) around each wire. The radius @fre illustrated in Figs. 2 and 3, where thg and.S;» parame-

the monopoles was taken into account in all three simulatiotess of the two monopoles are compared against measurements
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TABLE |
SIMULATION TIMES AND MEMORY REQUIREMENTS

Case [ Simulation Time (min) | Memory (Mbytes)

1 15 3.5
2 118 14.0
3 48 3.9

performed in the Electromagnetic Anechoic Chamber facility
(EMAC) at Arizona State University (ASUY1; represents the
reflection coefficient of the longest monopole (6 cm long) and [1]
S12 represents the coupling between the two monopoles. The
accuracy ofSy; is governed by the modeling of the wire and 2]

the discretization near the wire whereas the accuracy; ofs

governed by the accuracy of the FDTD stencil used to simu
late the wave propagation from one element to the other. Fo
both S;; andS;,, the computations of simulation 1 [FDTD(2,
2) with Az = 4 mm] do not agree well with the measurements
due to the poor discretization (onh/4 at 18 GHz). However,
simulations 2 and 3 provided predictions that are in very good
agreement with measurements. Simulation 2 used FDTD(2, 2J°!
and Az = 1.67 mm (or A\/10 at 18 GHz), which is a good
discretization of our structure. Simulation 3 used the hybrid [6]
FDTD(2, 4)-Subgrid FDTD(2, 2) and provided very good re-
sults forS1; since the discretization of the wires was done with
a fine grid @z = 4/3 mm or \/12 at 18 GHz). Furthermore,
the hybrid FDTD(2, 4)-Subgrid FDTD(2, 2) computations for
S12 were also accurate since the wave propagation from one el-
ement to the other was performed using the higher-order stencil
FDTD(2, 4), withAz = 4 mm (or\/4 at 18 GHz). Therefore, it
can be concluded that in the hybrid approach the field variations
around thin geometric features, such as wires, are captured usifig]
the standard FDTD(2, 2) and the available sub-cell models on a
fine grid. Moreover, the field propagation for large distances is
accurately modeled by a higher-order FDTD stencil [FDTD(2,[11]

4) in our case] on a coarse grid.

For the computation of' parameters, two simulations must 17
be performed for each of our cases. The simulation times, as
well as the memory requirements for each simulation, for case&3]
1, 2, and 3, are depicted and compared in Table I. To obtain
accurate results with FDTD(2, 2), a cell size of 1.67 mm had
to be used (case 2). This case required almost two and a h 1
times more time and three and a half times more memory tha
the respective time and memory of case 3, which used the hy-
brid FDTD(2, 4)-Subgrid FDTD(2, 2). It should be noted that 15
the computational savings will be significantly larger in cases
where the computational domain is electrically large in all three
directions (in our geometry, see Fig. 1, the domain is eIectricaII)Lle]

large along one direction only).

IV. CONCLUSION

An accurate hybrid FDTD(2, 4) coupled with FDTD(2, 2) on [18]
a subgrid has been presented. The results indicate great compu-
tational savings both in memory and time. Moreover, this hybrid

approach is very promising for other practical situations because
of the flexibility for the inclusion of all existing thin and sub-cell
models with FDTD(2, 2). Simultaneously, the method offers the
high accuracy of FDTD(2, 4) for the propagation of waves over
electrically large distances. Finally, this hybrid approach was
found to be stable after several thousands of time-steps when
the procedures of [16] were incorporated.
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